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Goal

I Say we have a function f : R→ R

I Want to recreate f (t) using only samples fk = f (kT ),
k ∈ Z, (0 < T fixed)

I Want formula f (t) = S({fk}, t)

I Want to know what restrictions there are on f and T
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Hilbert Space & Fourier Series

I Recall for any separable Hilbert space H

I (xk) orthonormal basis

x =
∑
k

〈x , xk〉xk ,∀x ∈ H

I This is the Fourier series of x in (xk)



Nyquist-Shannon
Sampling Theorem

and Whittaker-
Shannon

Interpolation

Nicholas
Richardson

Goal

Review

Hilbert Space & Fourier
Series

Classical Fourier Series

Machinery

Fourier Transform

Bandlimited Functions

Fourier Transform Inverse

Main Proof

Nyquist–Shannon Theorem

Whittaker–Shannon
Interpolation

Application

References

Hilbert Space & Fourier Series

I Recall for any separable Hilbert space H

I (xk) orthonormal basis

x =
∑
k

〈x , xk〉xk ,∀x ∈ H

I This is the Fourier series of x in (xk)



Nyquist-Shannon
Sampling Theorem

and Whittaker-
Shannon

Interpolation

Nicholas
Richardson

Goal

Review

Hilbert Space & Fourier
Series

Classical Fourier Series

Machinery

Fourier Transform

Bandlimited Functions

Fourier Transform Inverse

Main Proof

Nyquist–Shannon Theorem

Whittaker–Shannon
Interpolation

Application

References

Hilbert Space & Fourier Series

I Recall for any separable Hilbert space H

I (xk) orthonormal basis

x =
∑
k

〈x , xk〉xk ,∀x ∈ H

I This is the Fourier series of x in (xk)



Nyquist-Shannon
Sampling Theorem

and Whittaker-
Shannon

Interpolation

Nicholas
Richardson

Goal

Review

Hilbert Space & Fourier
Series

Classical Fourier Series

Machinery

Fourier Transform

Bandlimited Functions

Fourier Transform Inverse

Main Proof

Nyquist–Shannon Theorem

Whittaker–Shannon
Interpolation

Application

References

Classical Fourier Series

I Consider H = L2([−b, b]) , 0 < b <∞

I Will allow f : R→ C
I uk(t) = 1√

2b
e iπkt/b forms an orthonormal basis

Classical Fourier Series

For any f ∈ L2([−b, b]),

f (t) =
∑
k

1√
2b

f̂ (k)e iπkt/b

where

f̂ (k) =
1√
2b

∫ b

−b
f (t)e−iπkt/bdt.
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Fourier Transform

f̂ (k) =
1√
2b

∫ b

−b
f (t)e−iπkt/bdt.

I “Take b →∞”

(Forward) Fourier Transform

Define F : L1(R)→ L∞(R) as F f = F where

F (x) :=
1√
2π

∫ ∞
−∞

f (t)e−ixtdt.

I Call F the Fourier Transform of f
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Fourier Transform Notes

I Use L1(R) to ensure integral exists

‖F‖∞ ≤
1√
2π

∫ ∞
−∞
|f (t)|

∥∥e−ixt∥∥∞ dt =
1√
2π
‖f ‖1

I Can extend domain to include L2(R) and even infinitely
periodic function
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Bandlimited Functions

I f is Ω-bandlimited if F (x) = 0 for |x | > Ω

I In applications, x will be related to the frequencies of
what a signal f represents

I Ex. If f(t) is a sound wave, and humans can only hear
up to 22kHz, we often set frequencies above 22kHz to
zero since we can’t hear them anyway
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Fourier Transform Inverse

Fourier Transform Inversion Theorem

Let f ∈ L1(R), F = F f . Define g ∈ C (R) as

g(t) =
1√
2π

∫ ∞
−∞

F (x)e ixtdx .

Then g = f a.e.

I g is continuous, so equality on R if f is continuous
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Fourier Transform Inverse
Proof Sketch

I Can’t plug in forward transform (non convergent
integral)

I Define hλ(x) =
√

2
π

λ
λ2+x2 (Dirac Delta Approximator)

I Define convolution:

(f ∗ hλ)(x) =
1√
2π

∫ ∞
−∞

f (x − y)hλ(y)dy .

I Show limλ→0+(f ∗ hλ)(x) = g(x) (pointwise)

I Show limλ→0+(f ∗ hλ) = f (in L1 norm)
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Nyquist–Shannon Theorem

Nyquist–Shannon Sampling Theorem

Let f ∈ L1(R), continuous, and Ω-bandlimited. And suppose
F f = F ∈ L2(R).
=⇒ We can completely reconstruct f (t) (pointwise) using

only samples fk = f (kT ) where T = π/Ω.

I Can instead force continuity and piecewise smoothness
on F for uniform convergence.

I Can actually use any T ∈ (0, π/Ω)
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F̂ (k)e iπkx/Ω,

where
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Nyquist–Shannon Theorem
Proof

I Extend integration to all of R and rearrange constants

F̂ (k) =
1√
2Ω

∫ ∞
−∞

F (x)e−iπkx/Ωdx

=

√
2π√
2Ω

1√
2π

∫ ∞
−∞

F (x)e ix(−kπ/Ω)dx

=

√
2π√
2Ω

f (−kπ/Ω).

I f (−kπ/Ω) completely determines F̂ (k), F , and hence
f (t).
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Whittaker–Shannon Interpolation
Proof

I How do we actually recover f ?

I Plug in these three formulas and simplify

f (t) =
1√
2π

∫ ∞
−∞

F (x)e ixtdx (1)

F (x) =
∑
k

1√
2Ω

F̂ (k)e iπkx/Ω (2)

F̂ (k) =

√
2π√
2Ω

f (−kπ/Ω) (3)
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Proof

I (2) into (1)

f (t) =
1√
2π
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−Ω

[∑
k

1√
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F̂ (k)e iπkx/Ω

]
e ixtdx

f (t) =
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2π

1√
2Ω

∑
k

(
F̂ (k)

∫ Ω

−Ω
e ix(πk/Ω+t)dx

)
I (3) into F̂ (k)
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Whittaker–Shannon Interpolation
Proof

f (t) =
1

2Ω

∑
k

(
f (−kπ/Ω)

∫ Ω

−Ω
e ix(πk/Ω+t)dx

)

I Evaluate Integral∫ Ω

−Ω
e ix(πk/Ω+t)dx =

1

i(πk/Ω + t)

[
e ix(πk/Ω+t)

]x=Ω

x=−Ω

=
1

i(πk/Ω + t)

[
e i(πk+Ωt) − e−i(πk+Ωt)

]
=

2Ω

πk + Ωt
sin (πk + Ωt)
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Whittaker–Shannon Interpolation
Proof

I Plug back into formula for f (t)

f (t) =
1

2Ω

∑
k

(
f (−kπ/Ω)

2Ω

πk + Ωt
sin (πk + Ωt)

)

=
∑
k

f (−kπ/Ω)
sin (πk + Ωt)

πk + Ωt

=
∑
k

f

(
kπ

Ω

)
sinc

(
Ωt

π
− k

)
Where

sinc(x) =

{
1 x = 0
sin(πx)
πx x 6= 0
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Whittaker–Shannon Interpolation
Summary

Whittaker–Shannon Interpolation

Given the Nyquist-Shannon Sampling Theorem assumptions
hold,

f (t) =
∑
k

fksinc
( t

T
− k
)

where fk = f (kT ), T = π/Ω.

I ν = Ω
2πHz Nyquist Frequency

I νs = 1
T = 2νHz Nyquist Rate

I Can and should always sample faster (smaller T or
bigger νs)

I Ω-bandlimited implies Ω2-bandlimited for any Ω2 > Ω
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Application

I Most human voice frequencies are below 3.5kHz, so
telephones sample at 8kHz.

I CDs have a sampling rate of 44.1kHz since humans can
only hear up to around 22kHz

I Often apply a “lowpass filter” in applications before
sampling to ensure functions are bandlimited
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